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Abstract Current residual strength analyses and damage tol-

Results of a geometrically nonlinear finite eleme etrant design practice rely primarily on geometrically lin-
. 9 cally i ar analyses and fracture analyses based on linear elastic
parametric study to determine curvature correction fact

B , N . {3cture mechanics. Linear elastic fracture mechanics
or “bulging factors” that account for increased stresses

Ufggests that the strength of the stress singularity at the
to curvature for longitudinal cracks in unstiffened press %g g g Y

Yrack tip, or the crack-tip stress intensity factor, is an in-
ized cylindrical shells are presented. Geometric paramg: . b y '

L . ) fEator of the likelihood of fracture. The conventional
ters vgrled in the study include the shell rad_lus, the sheerﬁ ineering approach used in current design practice is
wall th|ckn¢ss, and the crack Ien_gth. The major resu!ts B%redict the crack-tip stress intensity factors for a crack
present(_ed in graphs of the bu!glng factor as a funCt'onir(i)a fuselage shell by applying a so-called “bulging fac-
the applied load and as a function of geometric parame > in combination with additional design factors that
that include the shell radius, the shell thickness and the

rack lenath. Th mputed bulging factors ar m Sount for stiffening elements, to the stress intensity
crack fength. 1he computed bulging factors are COmpaggl - ¢y 5 fiat sheet subjected to similar loading condi-
with solutions based on linear shallow shell theory, al

. . . . : HBns. The bulging factor accounts for the effects of cur-
with semi-empirical solutions that approximately accoufliure in the shell and amplifies the flat-sheet stress
for the nonlinear deformation in the vicinity of the crack

. . mtensity factor to account for the larger crack opening
:;h;Se;fzg:JSt:Z);al loads on the computed bulging faCtoe{ﬁd greater crack-tip stress intensity that occur in a shell.

The increases in crack opening and crack-tip stress inten-
Intr oduction sity are caused by the out-of-plane displacements in the

, neighborhood of the crack.
Transport fuselage shell structures are designed to Both analytical and empirical formul&s for

support qombinations of internal pressure and mechan' bulging factor have been developed. The analytical
loads which can cause the structure to have a geometri ¥aulas are based on linear thin shell equations, and are,

nonlinear response. These fuselage shells are requir E?eneral, valid only for small values of the shell curva-
have adequate structural integrity so that they do not fai Lﬂe parametek , where, for an isotropic shell, is de-
cracks develop at some time during the service life of 1€ed as: ' ' '

airplane. The structural response of a transport fuselage
shell structure with a crack is influenced by the local stress A= _a-4/12( 1-v2) (1)
and displacement gradients near the crack and by the inter- JRt

nal load distribution in the shell. Local fuselage out-ofnd:
plane skin displacements near a crack that are induced by

. . v = Poissons ratio
internal pressure loads can be large compared to the skin

thickness, and these displacements can couple with the in- a = half crack lengtl
ternal stress resultants in the shell _to amplify the magni- R = radius of the she
tudes of the local stresses and displacements near the .

crack. In addition, the stiffness and internal load distribu- t = thickness of the she

tions in a shell with a crack will change as the crack lendththe present papev, is held constant Aand s taken
increases. This nonlinear response must be understimobe the geometric parameter:

and accurately predicted in order to determine accurately

the structural integrity and residual strength of a fuselage A= 2= %EL/:F% (2)
structure with damage. JRt t

> — Stuctral Mechanics Branch. Member. AIAA For a longitudinal crack in a shell subjected to in-
erospace Engineer, Structural Mechanics Branch. Member, . : :

Head  Structural Mechanics Branch. Fellow, AIAA ternal pressure loads, the analytical bulging factors tend
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et al.;~ and is a result of the tensile membrane stresses
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that develop along the crack edges as the crack bulgezan be related to the strain-energy releaselfafeor a
These tensile stresses increase the resistance to additiflat plate with a central crack subjected to uniaxial ten-
al crack bulging and crack opening. This nonlinear cousion perpendicular to the crack direction, the stress inten-
pling between the bulging deformations and thesity factor,K, , is defined as:

membrane tensile stresses is not predicted by a linear _

analysis. More recently, some empirical formulas for de- Kp= omat(w) 3)
termining bulging factors which attempt to account forwherec is the in-plane remote stress acting perpendic-
the nonlinear character of the bulging response havelar to the crack line, anfi(W) is a function to account
been developed. These empirical formulas were devefor finite width effects. For the traditional Mode | type
oped for specific materials, geometries and loading conloading condition, where the applied tensile load is per-
ditions, and thus, the validity of the formulas is limited topendicular to the crack line, the relationship between
certain applications. These formulas may lead to unsafihe stress intensity factor and the strain-energy release
designs if their predictions are non-conservative, or conrate has the form:

versely, to excessive structural weight if they are overly t o

conservative. G =Ky 4

~_The present paper has two objectives. The first oynere E is Young’s modulus, and  is the plate thick-
jective is to present the results of a comprehensive gess. \When geometrically nonlinear effects are present,
metrically nonlinear numerical parametric study of theye giress field, and hence the stress intensity factor, are
response of aluminum shells with centrally located lony,ot jinear functions of the applied load, and the stress
gitudinal cracks subjected to combined internal PressUrRyensity factor cannot be defined as in Eq. (3). To
and mech_anical loads. The numerical anglysis IS CONyqdress this problem, an engineering approach is
ducted using the _STAé$($Tructural Analysis of Gen-  employed and the nonlinear stress intensity factor for
eral Shells) nonlinear finite element code. GeometriGha shell K. . is defined on the basis of Eq. f4)For
1 S L . N

parameters varied in the parametric study include thg,q present study, the stress intensity faltor is calcu-
shell radius, the shell wall thickness, and the crackyied from:

length. The second objective is to summarize and assess
some of the approximate analytical and empirical ex- K= J@ (5)
pressions that have been developed for predicting bulg- t
ing factors for use in crack growth and residual strengtiFor the symmetric loading conditions considered in the
analyses of fuselage shells. The accuracy and range gfesent papelK, defined by Eq. (5) is the total stress
applicability of the approximate expressions are assess@gtensity factor, and is a combination of the symmetric
through comparisons with the present geometricallfmembrane and bending stress intensity fact¢fs,  and
nonlinear analysis results. The major results are preserk; | respectivelyt> In the present paper, only the total
ed in graphs that show the bulging factor as a function oftress intensity factét, is considered. The stress inten-
applied load and as a function of the shell radius, theity factorK is related through a bulging factor to the
shell thickness, and crack-length parameters. Also instress intensity factor for the reference problem of a flat
cluded are descriptions of the overall shell response arlate with a central crack subjected to uniaxial tension
the local crack deformations. perpendicular to the crack direction. The bulging factor,
B, is defined as the ratio of the stress intensity fa€tor
in a shell with a crack, to the stress intensity faétgr

A principal interest of a designer is a method forin a flat plate of the same material, thickness, crack
predicting when a crack in a structure will grow, and forlength, and in-plane remote stregs, , acting perpendic-
predicting the residual strength remaining in a structurelar to the crack line:

Strain-Energy Release Rate and Bulgingdetor

with a crack over a portion of its length. Linear elasticity K
predicts a stress singularity at the tips of cracks, and in B = K—S (6)
the case of a flat plate, the stress singularity has the char- P

acter of the inverse square root of the distance from thlany studies have been conducted to characterize bulg-
crack tip. The strength of the crack-tip stress field singuing cracks, and both analytical and empirical formulas
larity is represented by the stress intensity fackor, for the bulging factor have been developed. Fblime-
which has been suggested as being significant in detevided the first analytical expressions for the stress inten-
mining the likelihood of crack extension.For a flat  sity factors in shells, using a formulation based on
plate, or in cases when the linear shell equations applghallow shell theory. These expressions are valid for
the crack-tip stress field and the stress intensity factor aamall values of the shell parameter . Erdogan and
proportional to the loads, and the stress intensity factoribler® extended the range of application of these
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expressions to larger valuesXf by solving numericallyan infinite number of equal length longitudinal cracks
the integral equations associated with the problem. levenly distributed along the length of the cylinder to
more recent work, semi-empirical approaches have beanaintain the symmetry of the models. The shell is made
employed to develop expressions for the bulging factoof 2024-T3 aluminum alloy and has a radigs, , an axial
In the subsequent results section of the present papéength, L, , a circumferential length,., , a wall thick-
bulging factor results from the geometrically nonlinearness,t , and a crack lengtta . The crack is centrally
finite element analyses are compared with Erdogan arldcated and is oriented longitudinally (parallel to the x-
Kibler's results and to semi-empirical relations devel-axis). The Young’s modulug, for the aluminum alloy
oped by Cherf,Jeong and Ton§and Bakuckas et &)  is equal to 10.35 msi and Poisson’s ratio is equal to 0.3.
The semi-empirical relations were derived using a straihe values of shell radius, half-crack length, and wall
energy approach combined with dimensional analysighickness that were included in the present study are:
The resulting relations for the bulging factor containR= 5 in., 10 in., 20 in., 40 in., 80 in., 120 in., 240 in.;
empirical constants that were determined from experia= 0.25in., 0.50 in., 1.0 in., 2.0 in., 4.0 in., 8.0 in., and
mental datd;® or from a geometrically nonlinear finite 16.0 in.; ancdt= 0.02 in., 0.04 in., 0.06 in., and 0.10 in.,
element parametric study:® The resulting relations which resulted in a variation of the shell curvature pa-
developed by ChehJeong and Torfgand Bakuckas et rameter of 0.2<A<13. Only combinations with

al.1%are provided in Egs. (7), (8), and (9), respectively. a/R< 0.4 were considered. The loading condition for

5 Eta 0316 = the shell consists of an applied internal presspre,

=2 Efa_U.5.0 pa] hich generates a hoop stress reacti and an axial
B= J1+ tanh=0.06- | = 7 W g p tmn,

3TR?p /1 + 18 8) tNEH stressg, , which is the sum of the stress from a bulkhead

where X = 0,/0, ,and is the internal pressure. The?'€SsUre loadp,, , and an applied mechanical |°afj'

remote axial stress is,  and the remote hoop stress f&m-  Three biaxial load ratios are considered:

G X =0,/0,=0,x =05andx =10.

Typical finite element models used to simulate the

B= 4/1+ 0.67]{555@2}2/3 (8)  response of the cracked shells are shown in Fig. 2, for
D:ryDEFE shells with two different crack lengths. Quarter symme-
El/3 /6 try was assumed, so only the shaded portion of the shell

B= 1+0.77 _E % 9) segment shown in Fig. 1 was modeled. Models are
y shown for two crack lengths to indicate the meshing pro-

The empirical constants in Chen’s expression, Eq. (7)¢edure employed for the wide range of parameters con-
were determined from fatigue crack growth tests offidered. The model dimensions in the  apd
pressurized curved panels, with maximum remote hoogirections, and the element dimensions were scaled by
stress levels equal to 8.5 and 13.5 ksi. Tests were coHi€ crack length. This approach was used to reduce the
ducted for both uniaxial and biaxial loading conditions.&ffort required to model shells with different crack
In the tests, the biaxial load rao= 0,/0,  was equa|lengt_hs, while maintaining reasonable consistency in the
to zero for the uniaxial loading condition and equal toSolution resolution in going from a mesh for a short crack
0.24 for the biaxial loading condition. Chen tested© & mesh for a long crack. The dimensions of the models
seven shells, with geometries with inthex andy directions were set equab® . These
0.0025< a/ R<0.05 and0.1< A < 2.0 . The empirical dimensions were chosen to reduce finite width and finite
constant in Jeong and Tong's relation, Eq. (8), wadength effects to an acceptable level; that is, changing the
determined from residual strength tests of curved paneRdge conditions resulted in less than a 2% change in the
with a radius R = 75 in. and with ratios of/R  Computed stress intensity factor.
between 0.06 and 0.10. Hoop stress levels were The shells were modeled using STAGS standard
between approximately 5.0 and 12.5 ksi. The empirica#10 quadrilateral shell elements and 510 and 710 mesh-
constant in Eq. (9) was determined from a geometricallyransition elements, where needed. The elements are flat
nonlinear finite element parametric study. The values dfacet type elements and are based on Kirchoff-Love shell
a/ R ranged from 0.017 to 0.18, and the remote hoopheory and the nonlinear Lagrangian strain tehdor.
stress level ranged from 5.0 to 20.0 ksi. Each of the shell element nodes has six degrees of free-
Shell Geometry andAnalysis Procedure dom, including three translational degrees of freedom,
v, andw, and three rotational degrees of freedaom,

Shell Model rv,and rw about the axes y, andz, respectively (see

The geometry of a typical shell analyzed in theFig. 1). Symmetry boundary conditions were prescribed
present study is defined in Fig. 1. The shell shown in Figon the left and bottom edges of the model. Periodic
1is a segment of an infinitely long cylindrical shell, with boundary conditions were prescribed to approximate the

y:
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physical boundary conditions on the top and right edgethe solution behavior. The strain energy release rate is
of the model. The right edge of the model was also corzalculated in STAGS, from a nonlinear equilibrium state,
strained to remain cylindrical throughout the loadingusing the modified crack closure integral technitfue.
process. Specifically, on the top edge of the modgl, the Results and Discussion

circumferential degree of freedom, , and the rotational ] ] )
degrees of freedonmy amd/ were set equal to zero: The geometrically nonlinear analysis results for un-
and on the right edgé of the model. the axial and radiatifened cylindrical shells with a longitudinal crack are
degrees of freedomy ana res'pectively were Conpresented in this section. The shell radius, half-crack

strained to be uniform, and the rotational degrees of fred€n9th. and wall thickness were varied to provide a vari-

dom, rv, andrw, were set equal to zero. A symmetricat'on of the shell curvature parameter@2< A <13

crack with only one side of the crack modeled was defll computations were performed usifg= 10.35 ~ msi
fined along the bottom edge of the model. The crack ha@dV= 0.3 . The loading condition was internal pres-

a half crack length equal @  and starts in the lower leffUr®: Which generates a hoop stresg, , and an applied
corner of the model and extends to the right. A fine mesf*ia! stresso, , which is the sum of the stresses due to a
was required to represent the stress and deformation gradlkhéad pressure load,, , and an applied mechanical
dients near the crack tip. To eliminate the dependence §f2d: Oxm - Three applied axial stress values were con-
the results on mesh resolution, several analyses wepidered:o, = 0 o, = 6,/2 and, = o, todemon-
conducted, with increasing mesh refinement in the cracidtrate the effect of biaxial loading conditions on the
tip region, until further refinement produced less tharPulding factors. _ _

1% change in the total stress intensity facter, . The This section Is geparated into tr_lree parts. First, an
analyses converged using elements near the crack ﬁBt_roductory descrlptl_on of thg behawor_of two represen-
with edge lengths equal 001a . Predictions of the ﬂat_tanve_shell geometrles subjected to internal pressure
plate stress intensity factor using the converged mesQ@ds is provided to demonstrate the effects of geometric
were within 1% of the predictions obtained using Eq. (2)ponllp§ar|t|es on the shell response. _Second, the nonlin-
with Irwin’s finite width adjustmen{? The loading on &' finite element_ results for the bulging factor are pre-
the shell consisted of two parts. Internal pressure waientéd as a function of the shell curvature parameter
simulated by applying a uniform lateral pressure to thénd the crack-length-to-radius ratia/R , for values of
shell wall and an axial tensile force to the right edge of€ far-field hoop stress,  equal to 1.0, 5.0, 10.0, 15.0
the shell,o, = (0,/2), with multi-point constraints to and 20.0 ksi. Bulging factor results based on linear shal-

enforce a uniform edge displacement. The load casd@W shell theory from Erdogan and Kibl%_and nonlin-

o, = 0 ando, = g, , were simulated by applying an €&' bulging factor results from expressions previously
X X y ! - .

additional axial force to the right edge of the model whilgPTésented in Egs. (7-9) are presented as well. Finally, the

retaining the multi-point constraints to enforce the uni-efféct of the biaxial load ratiay,/ o, , on the computed

form edge displacement. bulging factor is presented.

General Discussion

NonlinearAnalysis Procedure

Two shell geometries are considered to demon-
The shell responses were predicted numerically usstrate the differences in the behavior of shells with differ-
ing the STAGS (STructural Analysis of General Shells)ent geometries. The first shell geometry, referred to as
nonlinear shell analysis cod@. STAGS is a finite ele- configuration (1), has a radiuR, = 10  in., a thickness,
ment code for general-purpose analysis of shells of arbk = 0.10 in., and a half-crack lengtta = 2 in. The
trary shape and complexity. STAGS analysissecond shell geometry, referred to as configuration (2),
capabilities include stress, stability, vibration and tran-has a radiusR = 80 in., a thickness= 0.02  in., and
sient response analyses, with both material and geomet-half-crack lengtha = 16 in. Both geometries have
ric nonlinearities represented. The code uses both tHbe same value g/ R , and therefore, the shell curvature
modified and full Newton methods for its nonlinear solu-parameterA= (a/ R)(/R/1) is small for configuration
tion algorithms, and accounts for large rotations in a she(ll), and large for configuration (2). To illustrate and
by using a co-rotational algorithm at the element levelcompare the behavior of these configurations, the radial
The Riks pseudo arc-length path following mefifod ~ displacementv, at the center of the crack edge, the top
used to continue a solution past limit points in a nonlin-and bottom surface axial stresses at the center of the
ear response. With this method, the incrementally apsrack edge, and the crack-tip stress intensity factors and
plied loading parameter is replaced by an arc-lengtithe bulging factor are presented as a function of the far-
along the solution path which is then used as an indepefield hoop stres®,,
dent loading parameter. The arc-length increments are  The bulging radial displacement at the center of the
automatically adjusted by the program as a function o€rack edgew, , is shown in Fig. 3 as a function of the
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far-field hoop stresg, . For configuration (&), is ao, define a curve aB/tis varied. The curves defined by
linear function ofag,, with a relatively small amplitude. the points witha/R = 0.2 collapse to a single curve for
The value ofw,/t is equal to 0.94 when the valuepf  small values oR/t, indicating that3 is independent of
is equal to 10 ksi. For configuration (2, is a nonlin-pressure for small values Bft The curves defined by
ear function ofo, . The displacemew, initially in- the points witha/R = 0.05 show a similar trend, but the
creases rapidly with increase in load, and as the load results collapse onto a single curve at a larger valigé of
increased, the rate of change of increas dn reducéshan the curves with/R=0.2. The separation and dif-
with increase in load. The value wf/t is equal to 88ference in slopes of the curves &R = 0.2 anda/R =
when the value ofg, is equal to 10 ksi, which is very0.05 for the same value Bftindicate that the parameter
large in the context of nonlinear shell theory. R/tdoes not fully characterize the response.

The axial stress response at the center of the crack  The bulging factors for the same 31 configurations
edge is shown in Fig. 4 as a function of the far-field hoogare presented in Fig. 7 as a function of the shell parame-
stresso, . For configuration (1), the response is predomers A = a/(./RY) = (a/ R)(J/R/1) ,a/R and o, . In
inantly a linear bending response, with a net compressivgddition, bulging factors based on a linear shallow shell
axial stress. As the far-field stress is increased beyonfdrmulation (Erdogan and Kibi&rare shown by the dot-

10 ksi, stresses on the inner surface of the shell wall aged line in Fig. 7. For lower values of,  and smaller
proach yielding. For configuration (2), the initial re- values ofA , the bulging factors from the nonlinear anal-
sponse, at very low load levels, is predominantly &sis are independent of,  and approach the linear shal-
bending response. As the load is increased and the cralgly shell values. For constant valuesmf are as
bulges, axial tensile stresses develop along the crack increases, the bulging response transitions from a lin-
edges resulting in a net membrane tensile axial stressar bending dominated response to a nonlinear mem-
These tensile stresses increase the resistance of the shelne dominated response, and the bulging factor
to additional crack bulging and crack opening. The nonbecomes independentdf . For given valuesaidR,
linear coupling that occurs between the bulging deformathe bulging factor’s independence ®f  is equivalent to
tions and the membrane tensile stresses is the reason a1 independence of thickness. This predicted thickness
the stiffening response ofi;  with increasing load asndependence is consistent with experimental results ob-
shown in Fig. 3 for this configuration. tained by Peters and KuRmand Anderson and Sullivéh.

The nonlinear stress intensity facts, for eachThe transition from the linear bending dominated re-
configuration is shown in Fig. 5. Curvature and bulgingsponse to the nonlinear membrane dominated response is
deformations cause stress intensity factors for the curvegradual, as suggested by Hahn, et@and the value of
shells,K , that are greater than the corresponding valugswhere this transition occurs is a functionasR and
for a flat plate K, . For configuration Ky  varies lin- Oy.
early with far-field stress, and the pulglng fagfor i """ Comparison of Bulging &tor Results from Digrent
dependent of the load. For configuration (R), haﬁ\/lethods
higher values than for configuration (1), and increases
rapidly during the initial loading phase, causing a higher The bulging factors from the nonlinear analyses are
bulging factor initially. At higher loads, the axial mem- compared to predictions from Erdogan and KiBler,
brane tension along the crack edge reduces the bulgir€hen (Eq. 7), Jeong and Tong (Eqg. 8), and Bakuckas et
deformations and the rate of increaseKin  , and is real. (Eq. 9) in Figs. 8 and 9. In Fig. 8, the bulging factors
flected in a lower bulging factor as the far-field stress in-are compared foa/r = 0.10, and values 06, =1ksi, 5
creases. These results show that, for these configuratioksi, 10 ksi, and 20 ksi. In Fig. 8a, Erdogan and Kibler's
which have the san®R  the bulging factor is a function solution and the STAGS nonlinear analysis predictions
of the far-field stress for the configuration with the largercorrelate well for values of ara|,  where the response
value ofR/t, and is constant with load for the configura- is bending dominated. Erdogan and Kibler's solution
tion with a lower value dR/t This trend is also observed does not predict the membrane dominated response that
in Fig. 6 which show8 as a function o/R, R/t, ando, occurs for higher values of amg . Equation (7) pre-
for 31 of the configurations considered in the presentlicts a region of bending dominated response and the
parametric study. In this figure, each configuration hagransition to a membrane dominated response which in-
unique values o&/R andR/t, and bulging factors are cludes a dependence ap , but Eq. (7) indicates that the
shown as discrete points for each configuration for farbulging factors are more sensitive to variationsoin
field stress levels of 1 ksi, 5 ksi, and 10 ksi. Configurathan predicted by the nonlinear analysis. In Fig. 8b, the
tions (1) and (2) described above are identified by thdulging factors from Eq. (8) and Eq. (9) correlate well
heavy vertical dotted lines in Fig. 6. It is shown in Fig.with the STAGS nonlinear analysis results for values of
6 that the discrete points with the same valuggénd A ando, where the response is membrane dominated.
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The correlation between Eq. (8) and the STAGS nonlindominated response. The bending dominated response is
ear analysis results degrades for high and low values oépresented in Eq. (7) usingemh function to empirical-

o,. Neither Eqg. (8) nor Eq. (9) represents the reductiofy modify the membrane theory. The discrepancies be-
in the bulging factor when the response is bending dontween the results from Eq. (7) and the nonlinear analysis

inated. results are probably due to the limited range of parame-

The bulging factor results are compared in Fig. oters and experimental data that were used to obtain the
for o, =10 ksi, and/R=0.025, 0.05, 0.1, 0.2, and 0.4. €émpirical constants in Eq. (7). Since both Eq. (8) and
In Figs. 9a and 9b, the bulging factors from the STAGS=0: (9) contain empirical constants that were derived by
nonlinear analyses asymptotically approach Erdogan arfiiting the expressions to experimental data or to results
Kibler's solution for small values f . The value)of ©Of nonlinear finite element analyses, respectively, the
where the bulging factors from the nonlinear analysis decorrelation between bulging factors obtained with these
viate from Erdogan and Kibler's solution is a function of €quations and the current nonlinear analysis degrades for
a/R and for small values o , this deviation occurs forconfigurations or ranges of loading conditions outside of
values ofA less than 1.0. The results in Figs. 9a and ghe range of parameters used to derive the empirical con-
indicate that Eq. (7) reflects the general trend of the bulgStants.
ing factors from the nonlinear analysis, but Eq. (7) apBijaxial Loads
pears to underpredict the bulging factor in the bending : : : :

; : : . . Most nonlinear bulging factor expressions for axial
dominated region, and overpredicts the bulging factors in : .

. ; : cracks have been developed with the assumption that the
the membrane dominated region. In Figs. 9c and 9d, thé ..~ . : . o .

. cylindrical shell is subjected to biaxial loads with
bulging factors from Eq. (8) and Eg. (9) correlate well ™7~ 6./2 or a biaxial load ratior = 0./G = 05
with the STAGS nonlinear analysis results for values of X -~ =’ X = 0,/ 0y= 0.

A anda/Rwhere the response is membrane dominated.; herf also conductec_j fimgue experiments for pressur-
. . 1zed curved sheets wigh= 0.0 and 0.24. Chen reported
The correlation between Eg. (8) and the nonlinear anal

V3 oo - . )
sis results degrades for the higher valuea/Bf while that biaxial loads significantly reduced the bulging de

the correlation between Eq. (9) and the nonlinear anal formations and consequently reduced the crack growth

. . rate. The bulging factors for configurations wéttir =
sis results degrades for lower and higher valuegkf 0.1,0, = 10 ksi, and biaxial load ratigs- 0.0, 0.5, and

Again, neither Eq. (8) nor Eq. (9) represents the reduci_o are shown in Fig. 10. The results of the STAGS non-

tion in the bulging factor when the response is berw“n%near finite element analyses show that the biaxial load

dominated. ratio has no significant effect on the bulging factors for

The results presented in Figs. 8 and 9 indicate thay )| values o\ where the response is bending domi-
the bulging responses obtained from the nonlinear analjaieq. For values of greater than 1.0, the far-field ax-

yses typically correlate well with the bulging factor ex-i5| gstress influences the local axial membrane stress
pressions reported in the literature, as long as thgiong the length of the crack. Increasjpéom 0.5 to
assumptions used in defining the bulging factor expresy g jncreases the local membrane tensile stress, suppress-
sions are considered. The results of the nonlinear analys the crack bulging deformations, and reduces the bulg-
ses identify specific regions of the response which arghg effect by 20%. Conversely, decreasirigom 0.5 to

either bending dominated, membrane dominated, or i g gecreases the local membrane tension stress, increas-
transition between these response regions. Erdogan agd ihe crack bulging deformations, and increases the

Kibler’s solution is based on linear shallow shell theorybulging effect by 28%. The bulging factors from Er-
which assumes small deformations and does not aCCOUBBgan and Kibler's solution, Eq. (8), and Eq. (9) do not
for the nonlinear coupling between the bulging deforma—depend orx. Chen includes the effect of the biaxial load

tions and the membrane stresses that oceurs with 1arg&iio in Eq. (7), but the results in Fig. 10 indicate that Eq.
deformatllons. Thus, Erdogan a_lnd Kibler's §0Iut|on doe§7) substantially overpredicts the bulging responsg for

not predict a membrane dominated bulging response. o g The large discrepancy between the bulging re-
Typically, Erdogan and Kibler's solution is valid for ghonse predicted by Eq. (7) and the nonlinear finite ele-
small values ofA , and the range of applicability is re-nant results suggests that the application of the

duced for lower values @/Rand higher values o, . fnctional dependence of the bulging factoryothat is
The bulging factor expressions in Egs. (7-9) are based Pbrirayed in Eq. (7) is limited.

the assumption that the primary resistance to bulging de-
formation is due to membrane tension stress rather than
due to bending stiffness, and thus, these expressions The results of a geometrically nonlinear parametric
should correlate well with the nonlinear analysis resultstudy to determine the effects of shell curvature and
for configurations where the response is membrane dontrack length on the stress intensity factors at the tips of
inated, and should not accurately represent a bendirigngitudinal cracks in thin unstiffened pressurized shells

Concluding Remarks
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